能源經濟及策略、新及再生能源、火力、核能及核設施除役、原子科技及民生應用的專業資訊平台



Oxidation Characteristics and Electrical Properties of La- or Ce-Doped MnCo2O4 as Protective Layer on SUS441 for Metallic Interconnects in Solid Oxide Fuel Cells

出處 INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 作者 Hui-Ping Tseng Tung-YuanYung Chien-Kuo Liu Yung-Neng Cheng Ruey-Yi Lee 年份 2020
報告類型 國際期刊 分類 |新及再生能源 資料時間 2020年7月

In this study, we discuss the evolution of area specific resistance (ASR) of SUS441 which was coated with MnCo2O4, La-doped MnCo2O4, and Ce-doped MnCo2O4, respectively. These systems are meant to simulate as protective layers for metallic interconnects in solid oxide fuel cells (SOFCs) and were tested at 800 °C in 2 L/min air flow for 5600 h. The protective coatings were deposited by using pulsed DC magnetron sputtering and the thickness was 5.0 ± 1.0 μm. The compositions and microstructures were observed by SEM/EDS and XRD. Results show that a trace amount of La addition into MnCo2O4 is beneficial to keep stable electrical resistance and inhibit the growth of the oxide scale between the SUS441 substrate and the protective layer for this coating system. However, visible cracks can be seen in MnCo2O4 and Ce-doped MnCo2O4 specimens at the interfacial layer between the oxidation scale on SUS441 and the coatings after heat treatment at elevated temperatures.

 

相關連結